Fast dcast for data.table
dcast.data.table.Rd
dcast.data.table
is data.table
's long-to-wide reshaping tool. In the spirit of data.table
, it is very fast and memory efficient, making it well-suited to handling large data sets in RAM. More importantly, it is capable of handling very large data quite efficiently in terms of memory usage. dcast.data.table
can also cast multiple value.var
columns and accepts multiple functions to fun.aggregate
. See Examples for more.
Usage
# S3 method for data.table
dcast(data, formula, fun.aggregate = NULL, sep = "_",
..., margins = NULL, subset = NULL, fill = NULL,
drop = TRUE, value.var = guess(data),
verbose = getOption("datatable.verbose"),
value.var.in.dots = FALSE, value.var.in.LHSdots = value.var.in.dots,
value.var.in.RHSdots = value.var.in.dots)
Arguments
- data
A
data.table
.- formula
A formula of the form LHS ~ RHS to cast, see Details.
- fun.aggregate
Should the data be aggregated before casting? If the formula doesn't identify a single observation for each cell, then aggregation defaults to
length
with a warning of class 'dt_missing_fun_aggregate_warning'.To use multiple aggregation functions, pass a
list
; see Examples.- sep
Character vector of length 1, indicating the separating character in variable names generated during casting. Default is
_
for backwards compatibility.- ...
Any other arguments that may be passed to the aggregating function.
- margins
Not implemented yet. Should take variable names to compute margins on. A value of
TRUE
would compute all margins.- subset
Specified if casting should be done on a subset of the data. Ex:
subset = .(col1 <= 5)
orsubset = .(variable != "January")
.- fill
Value with which to fill missing cells. If
fill=NULL
and missing cells are present, thenfun.aggregate
is used on a 0-length vector to obtain a fill value.- drop
FALSE
will cast by including all missing combinations.c(FALSE, TRUE)
will only include all missing combinations of formulaLHS
;c(TRUE, FALSE)
will only include all missing combinations of formula RHS. See Examples.- value.var
Name of the column whose values will be filled to cast. Function
guess()
tries to, well, guess this column automatically, if none is provided.Cast multiple
value.var
columns simultaneously by passing their names as acharacter
vector. See Examples.- verbose
Not used yet. May be dropped in the future or used to provide informative messages through the console.
- value.var.in.dots
logical;
value.var.in.dots = TRUE
is shorthand to save setting bothvalue.var.in.LHSdots = TRUE
andvalue.var.in.RHSdots = TRUE
.- value.var.in.LHSdots
logical; if TRUE,
...
in LHS of theformula
includesvalue.var
variables. The default isFALSE
, so that...
represents all variables not otherwise mentioned informula
orvalue.var
(including default/guessedvalue.var
).- value.var.in.RHSdots
logical; analogous to
value.var.in.LHSdots
above, but with respect to RHS of theformula
.
Details
The cast formula takes the form LHS ~ RHS
, ex: var1 + var2 ~ var3
. The order of entries in the formula is essential. There are two special variables: .
represents no variable, while ...
represents all variables not otherwise mentioned in formula
, and value.var
depending on value.var.in.LHSdots
and value.var.in.RHSdots
arguments; see Examples.
When not all combinations of LHS & RHS values are present in the data, some or all (in accordance with drop
) missing combinations will replaced with the value specified by fill
. Note that fill
will be converted to the class of value.var
; see Examples.
dcast
also allows value.var
columns of type list
.
When variable combinations in formula
don't identify a unique value, fun.aggregate
will have to be specified, which defaults to length
. For the formula var1 ~ var2
, this means there are some (var1, var2)
combinations in the data corresponding to multiple rows (i.e. x
is not unique by (var1, var2)
.
The aggregating function should take a vector as input and return a single value (or a list of length one) as output. In cases where value.var
is a list, the function should be able to handle a list input and provide a single value or list of length one as output.
If the formula's LHS contains the same column more than once, ex: dcast(DT, x+x~ y)
, then the answer will have duplicate names. In those cases, the duplicate names are renamed using make.unique
so that key can be set without issues.
Names for columns that are being cast are generated in the same order (separated by an underscore, _
) from the (unique) values in each column mentioned in the formula RHS.
From v1.9.4
, dcast
tries to preserve attributes wherever possible.
From v1.9.6
, it is possible to cast multiple value.var
columns and also cast by providing multiple fun.aggregate
functions. Multiple fun.aggregate
functions should be provided as a list
, for e.g., list(mean, sum, function(x) paste(x, collapse="")
. value.var
can be either a character vector or list of length one, or a list of length equal to length(fun.aggregate)
. When value.var
is a character vector or a list of length one, each function mentioned under fun.aggregate
is applied to every column specified under value.var
column. When value.var
is a list of length equal to length(fun.aggregate)
each element of fun.aggregate
is applied to each element of value.var
column.
Historical note: dcast.data.table
was originally designed as an enhancement to reshape2::dcast
in terms of computing and memory efficiency. reshape2
has since been superseded in favour of tidyr
, and dcast
has had a generic defined within data.table
since v1.9.6
in 2015, at which point the dependency between the packages became more etymological than programmatic. We thank the reshape2
authors for the inspiration.
Value
A keyed data.table
that has been cast. The key columns are equal to the variables in the formula
LHS in the same order.
Examples
ChickWeight = as.data.table(ChickWeight)
setnames(ChickWeight, tolower(names(ChickWeight)))
DT <- melt(as.data.table(ChickWeight), id.vars=2:4) # calls melt.data.table
# dcast is an S3 method in data.table from v1.9.6
dcast(DT, time ~ variable, fun.aggregate=mean)
#> Key: <time>
#> time weight
#> <num> <num>
#> 1: 0 41.06000
#> 2: 2 49.22000
#> 3: 4 59.95918
#> 4: 6 74.30612
#> 5: 8 91.24490
#> 6: 10 107.83673
#> 7: 12 129.24490
#> 8: 14 143.81250
#> 9: 16 168.08511
#> 10: 18 190.19149
#> 11: 20 209.71739
#> 12: 21 218.68889
dcast(DT, diet ~ variable, fun.aggregate=mean)
#> Key: <diet>
#> diet weight
#> <fctr> <num>
#> 1: 1 102.6455
#> 2: 2 122.6167
#> 3: 3 142.9500
#> 4: 4 135.2627
dcast(DT, diet+chick ~ time, drop=FALSE)
#> Key: <diet, chick>
#> diet chick 0 2 4 6 8 10 12 14 16 18
#> <fctr> <ord> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num>
#> 1: 1 18 39 35 NA NA NA NA NA NA NA NA
#> 2: 1 16 41 45 49 51 57 51 54 NA NA NA
#> 3: 1 15 41 49 56 64 68 68 67 68 NA NA
#> 4: 1 13 41 48 53 60 65 67 71 70 71 81
#> 5: 1 9 42 51 59 68 85 96 90 92 93 100
#> ---
#> 196: 4 49 40 53 64 85 108 128 152 166 184 203
#> 197: 4 46 40 52 62 82 101 120 144 156 173 210
#> 198: 4 50 41 54 67 84 105 122 155 175 205 234
#> 199: 4 42 42 49 63 84 103 126 160 174 204 234
#> 200: 4 48 39 50 62 80 104 125 154 170 222 261
#> 20 21
#> <num> <num>
#> 1: NA NA
#> 2: NA NA
#> 3: NA NA
#> 4: 91 96
#> 5: 100 98
#> ---
#> 196: 233 237
#> 197: 231 238
#> 198: 264 264
#> 199: 269 281
#> 200: 303 322
dcast(DT, diet+chick ~ time, drop=FALSE, fill=0)
#> Key: <diet, chick>
#> diet chick 0 2 4 6 8 10 12 14 16 18
#> <fctr> <ord> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num>
#> 1: 1 18 39 35 0 0 0 0 0 0 0 0
#> 2: 1 16 41 45 49 51 57 51 54 0 0 0
#> 3: 1 15 41 49 56 64 68 68 67 68 0 0
#> 4: 1 13 41 48 53 60 65 67 71 70 71 81
#> 5: 1 9 42 51 59 68 85 96 90 92 93 100
#> ---
#> 196: 4 49 40 53 64 85 108 128 152 166 184 203
#> 197: 4 46 40 52 62 82 101 120 144 156 173 210
#> 198: 4 50 41 54 67 84 105 122 155 175 205 234
#> 199: 4 42 42 49 63 84 103 126 160 174 204 234
#> 200: 4 48 39 50 62 80 104 125 154 170 222 261
#> 20 21
#> <num> <num>
#> 1: 0 0
#> 2: 0 0
#> 3: 0 0
#> 4: 91 96
#> 5: 100 98
#> ---
#> 196: 233 237
#> 197: 231 238
#> 198: 264 264
#> 199: 269 281
#> 200: 303 322
# using subset
dcast(DT, chick ~ time, fun.aggregate=mean, subset=.(time < 10 & chick < 20))
#> Key: <chick>
#> chick 0 2 4 6 8
#> <ord> <num> <num> <num> <num> <num>
#> 1: 18 39 35 NaN NaN NaN
#> 2: 16 41 45 49 51 57
#> 3: 15 41 49 56 64 68
#> 4: 13 41 48 53 60 65
#> 5: 9 42 51 59 68 85
# drop argument, #1512
DT <- data.table(v1 = c(1.1, 1.1, 1.1, 2.2, 2.2, 2.2),
v2 = factor(c(1L, 1L, 1L, 3L, 3L, 3L), levels=1:3),
v3 = factor(c(2L, 3L, 5L, 1L, 2L, 6L), levels=1:6),
v4 = c(3L, 2L, 2L, 5L, 4L, 3L))
# drop=TRUE
dcast(DT, v1+v2~v3, value.var='v4') # default is drop=TRUE
#> Key: <v1, v2>
#> v1 v2 1 2 3 5 6
#> <num> <fctr> <int> <int> <int> <int> <int>
#> 1: 1.1 1 NA 3 2 2 NA
#> 2: 2.2 3 5 4 NA NA 3
dcast(DT, v1+v2~v3, value.var='v4', drop=FALSE) # all missing combinations of LHS and RHS
#> Key: <v1, v2>
#> v1 v2 1 2 3 4 5 6
#> <num> <fctr> <int> <int> <int> <int> <int> <int>
#> 1: 1.1 1 NA 3 2 NA 2 NA
#> 2: 1.1 2 NA NA NA NA NA NA
#> 3: 1.1 3 NA NA NA NA NA NA
#> 4: 2.2 1 NA NA NA NA NA NA
#> 5: 2.2 2 NA NA NA NA NA NA
#> 6: 2.2 3 5 4 NA NA NA 3
dcast(DT, v1+v2~v3, value.var='v4', drop=c(FALSE, TRUE)) # all missing combinations of LHS only
#> Key: <v1, v2>
#> v1 v2 1 2 3 5 6
#> <num> <fctr> <int> <int> <int> <int> <int>
#> 1: 1.1 1 NA 3 2 2 NA
#> 2: 1.1 2 NA NA NA NA NA
#> 3: 1.1 3 NA NA NA NA NA
#> 4: 2.2 1 NA NA NA NA NA
#> 5: 2.2 2 NA NA NA NA NA
#> 6: 2.2 3 5 4 NA NA 3
dcast(DT, v1+v2~v3, value.var='v4', drop=c(TRUE, FALSE)) # all missing combinations of RHS only
#> Key: <v1, v2>
#> v1 v2 1 2 3 4 5 6
#> <num> <fctr> <int> <int> <int> <int> <int> <int>
#> 1: 1.1 1 NA 3 2 NA 2 NA
#> 2: 2.2 3 5 4 NA NA NA 3
# using . and ...
DT <- data.table(v1 = rep(1:2, each = 6),
v2 = rep(rep(1:3, 2), each = 2),
v3 = rep(1:2, 6),
v4 = rnorm(6))
dcast(DT, ... ~ v3, value.var="v4") # same as v1+v2 ~ v3, value.var="v4"
#> Key: <v1, v2>
#> v1 v2 1 2
#> <int> <int> <num> <num>
#> 1: 1 1 0.4789955 0.1494321
#> 2: 1 2 -0.8417290 -0.1728066
#> 3: 1 3 -1.4257477 -1.0967070
#> 4: 2 1 0.4789955 0.1494321
#> 5: 2 2 -0.8417290 -0.1728066
#> 6: 2 3 -1.4257477 -1.0967070
dcast(DT, ... ~ v3, value.var="v4", value.var.in.dots=TRUE) # same as v1+v2+v4~v3, value.var="v4"
#> Key: <v1, v2, v4>
#> v1 v2 v4 1 2
#> <int> <int> <num> <num> <num>
#> 1: 1 1 0.1494321 NA 0.1494321
#> 2: 1 1 0.4789955 0.4789955 NA
#> 3: 1 2 -0.8417290 -0.8417290 NA
#> 4: 1 2 -0.1728066 NA -0.1728066
#> 5: 1 3 -1.4257477 -1.4257477 NA
#> 6: 1 3 -1.0967070 NA -1.0967070
#> 7: 2 1 0.1494321 NA 0.1494321
#> 8: 2 1 0.4789955 0.4789955 NA
#> 9: 2 2 -0.8417290 -0.8417290 NA
#> 10: 2 2 -0.1728066 NA -0.1728066
#> 11: 2 3 -1.4257477 -1.4257477 NA
#> 12: 2 3 -1.0967070 NA -1.0967070
dcast(DT, v1+v2+v3 ~ ., value.var="v4")
#> Key: <v1, v2, v3>
#> v1 v2 v3 .
#> <int> <int> <int> <num>
#> 1: 1 1 1 0.4789955
#> 2: 1 1 2 0.1494321
#> 3: 1 2 1 -0.8417290
#> 4: 1 2 2 -0.1728066
#> 5: 1 3 1 -1.4257477
#> 6: 1 3 2 -1.0967070
#> 7: 2 1 1 0.4789955
#> 8: 2 1 2 0.1494321
#> 9: 2 2 1 -0.8417290
#> 10: 2 2 2 -0.1728066
#> 11: 2 3 1 -1.4257477
#> 12: 2 3 2 -1.0967070
## for each combination of (v1, v2), add up all values of v4
dcast(DT, v1+v2 ~ ., value.var="v4", fun.aggregate=sum)
#> Key: <v1, v2>
#> v1 v2 .
#> <int> <int> <num>
#> 1: 1 1 0.6284276
#> 2: 1 2 -1.0145356
#> 3: 1 3 -2.5224546
#> 4: 2 1 0.6284276
#> 5: 2 2 -1.0145356
#> 6: 2 3 -2.5224546
# fill and types
dcast(DT, v2~v3, value.var='v1', fun.aggregate=length, fill=0L) # 0L --> 0
#> Key: <v2>
#> v2 1 2
#> <int> <int> <int>
#> 1: 1 2 2
#> 2: 2 2 2
#> 3: 3 2 2
dcast(DT, v2~v3, value.var='v4', fun.aggregate=length, fill=1.1) # 1.1 --> 1L
#> Key: <v2>
#> v2 1 2
#> <int> <int> <int>
#> 1: 1 2 2
#> 2: 2 2 2
#> 3: 3 2 2
# multiple value.var and multiple fun.aggregate
DT = data.table(x=sample(5,20,TRUE), y=sample(2,20,TRUE),
z=sample(letters[1:2], 20,TRUE), d1=runif(20), d2=1L)
# multiple value.var
dcast(DT, x+y ~ z, fun.aggregate=sum, value.var=c("d1","d2"))
#> Key: <x, y>
#> x y d1_a d1_b d2_a d2_b
#> <int> <int> <num> <num> <int> <int>
#> 1: 1 2 0.04036824 0.8993056 1 1
#> 2: 2 1 0.41522860 0.8570113 1 1
#> 3: 3 2 0.56899511 2.0014619 1 3
#> 4: 4 1 1.19256657 1.7497812 2 3
#> 5: 4 2 0.34823530 0.1333363 1 1
#> 6: 5 1 1.08998185 0.8231931 3 1
#> 7: 5 2 0.15692518 0.0000000 1 0
# multiple fun.aggregate
dcast(DT, x+y ~ z, fun.aggregate=list(sum, mean), value.var="d1")
#> Key: <x, y>
#> x y d1_sum_a d1_sum_b d1_mean_a d1_mean_b
#> <int> <int> <num> <num> <num> <num>
#> 1: 1 2 0.04036824 0.8993056 0.04036824 0.8993056
#> 2: 2 1 0.41522860 0.8570113 0.41522860 0.8570113
#> 3: 3 2 0.56899511 2.0014619 0.56899511 0.6671540
#> 4: 4 1 1.19256657 1.7497812 0.59628328 0.5832604
#> 5: 4 2 0.34823530 0.1333363 0.34823530 0.1333363
#> 6: 5 1 1.08998185 0.8231931 0.36332728 0.8231931
#> 7: 5 2 0.15692518 0.0000000 0.15692518 NaN
# multiple fun.agg and value.var (all combinations)
dcast(DT, x+y ~ z, fun.aggregate=list(sum, mean), value.var=c("d1", "d2"))
#> Key: <x, y>
#> x y d1_sum_a d1_sum_b d2_sum_a d2_sum_b d1_mean_a d1_mean_b
#> <int> <int> <num> <num> <int> <int> <num> <num>
#> 1: 1 2 0.04036824 0.8993056 1 1 0.04036824 0.8993056
#> 2: 2 1 0.41522860 0.8570113 1 1 0.41522860 0.8570113
#> 3: 3 2 0.56899511 2.0014619 1 3 0.56899511 0.6671540
#> 4: 4 1 1.19256657 1.7497812 2 3 0.59628328 0.5832604
#> 5: 4 2 0.34823530 0.1333363 1 1 0.34823530 0.1333363
#> 6: 5 1 1.08998185 0.8231931 3 1 0.36332728 0.8231931
#> 7: 5 2 0.15692518 0.0000000 1 0 0.15692518 NaN
#> d2_mean_a d2_mean_b
#> <num> <num>
#> 1: 1 1
#> 2: 1 1
#> 3: 1 1
#> 4: 1 1
#> 5: 1 1
#> 6: 1 1
#> 7: 1 NaN
# multiple fun.agg and value.var (one-to-one)
dcast(DT, x+y ~ z, fun.aggregate=list(sum, mean), value.var=list("d1", "d2"))
#> Key: <x, y>
#> x y d1_sum_a d1_sum_b d2_mean_a d2_mean_b
#> <int> <int> <num> <num> <num> <num>
#> 1: 1 2 0.04036824 0.8993056 1 1
#> 2: 2 1 0.41522860 0.8570113 1 1
#> 3: 3 2 0.56899511 2.0014619 1 1
#> 4: 4 1 1.19256657 1.7497812 1 1
#> 5: 4 2 0.34823530 0.1333363 1 1
#> 6: 5 1 1.08998185 0.8231931 1 1
#> 7: 5 2 0.15692518 0.0000000 1 NaN